Mesure, prévision et réduction des émissions des véhicules électriques : cas des particules d'usure de pneu-chaussée

Sujet pour le Tremplin Recherche d'ESIEE Paris, 2025–2026

Le laboratoire

Le projet se déroulera au sein du laboratoire EASE (https://ease.univ-gustave-eiffel.fr/) de Nantes de l'UGE. Le laboratoire contribue à l'évaluation de l'exposition des personnes (voyageurs, riverains) et du milieu naturel (l'air, l'eau, les sols, la flore, la faune) aux risques d'accidents et de pollution induits par les transports routiers. Pour cela il s'appuie sur une compréhension des phénomènes qui sont à l'origine des risques et sur des méthodologies fiables pour le recueil des données nécessaires à l'analyse des phénomènes et leur modélisation.

Le Tuteur

Le tuteur du projet sera le Dr. Bogdan Muresan, chargé de recherche du Ministère de la Transition Ecologique et responsable de la plateforme de mesure des émissions du site de Nantes (https://ease.univ-gustave-eiffel.fr/recherches-et-expertises/themes-de-recherche/impact-des-polluants/contaminants).

e-mail: bogdan.muresan-paslaru@univ-eiffel.fr

Les filières visées

Datascience et IA ; Systèmes électroniques communicants et embarqués ; Industrie 4.0. Ouvert à des étudiants en E4 (nov-avr en distanciel) avec possibilité de poursuite par un stage (mai-août à Nantes), ou en E5 (nov-jan en distanciel) avec un stage de fin d'études (fév-jul à Nantes). Le sujet sera adapté selon le niveau.

Cadre du projet

Au cours de leur utilisation, les pneus et les chaussées sont soumis à l'abrasion causée par les conditions de conduite (*Fig. 1*). Cette abrasion de la bande de roulement des pneus et de la chaussée produit des particules d'usure dénommées TRWP (pour Tire and Road Wear Particles en anglais) [1]. Avec près de 1 kg/an/personne émisses à l'échelle globale [2], ces TRWP ont été identifiées comme une source majeure de pollution aux particules fines dans les zones urbaines ainsi que de microplastiques dans l'environnement global [3].

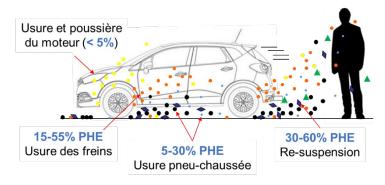


Figure 1 : Les émissions de particules d'un véhicule avec un focus sur les sources hors-échappement.

L'évolution vers une électrification massive du parc automobile Français contribue à accroître ces émissions en raison de l'augmentation du nombre et de la masse (10 à >30% plus lourdes que leurs équivalentes thermiques) des véhicules [4].

Cette augmentation s'expliquerait aussi par le dynamisme particulier des véhicules électriques (VE), pour lesquels la puissance moteur est délivrée instantanément. Cela entraîne, lors des phases d'accélération, une contrainte accrue sur les pneus (souvent plus larges) et la chaussée et donc une abrasion plus importante.

Deux objectifs de projet au choix

Selon sa filière, l'étudiant pourra se focaliser sur l'**un des deux** projets suivants :

1. l'utilisation de l'intelligence artificielle pour identifier les variables dynamiques (e.g. accélérations, vitesses, taux de glissement, angle du volant, puissance délivrée...) explicatives des émissions de TRWP d'une Peugeot e2008 (*Fig. 2*). Ce VE permet de mesurer les émissions tout en enregistrant chaque seconde plus de 40 variables dynamiques (dont les forces, les moments exercés à l'interface pneu-chaussée). Les bases de données ainsi constituées sont riches de plusieurs dizaines de milliers de mesures. Ce travail, essentiellement numérique, comporte deux parties : la recherche (en distanciel) et la validation (sur le site de l'UGE de Nantes) des variables explicatives. Selon le type de variables ciblées, la validation pourra avoir lieu sur piste d'essai ou sur route pour différents trajets tels que urbains, périurbains et périphérique. Ce travail s'inscrit dans une démarche opérationnelle qui vise à optimiser les variables dynamiques d'un VE afin de formuler des stratégies d'éco-conduite indispensables à la réduction de la pollution ambiante aux particules fines.

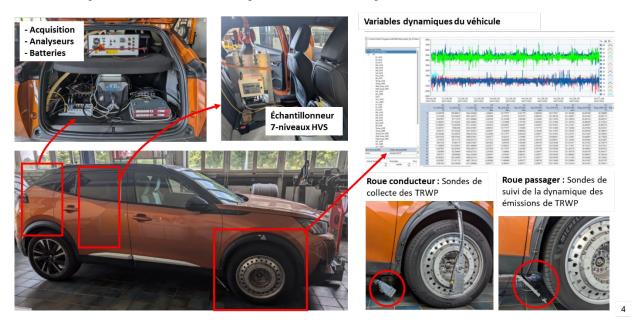


Figure 2 : Le véhicule électrique instrumenté. Un exemple d'enregistrement des variables dynamiques du véhicule est proposé dans le panneau en haut à droite. Les sondes de collecte et de suivi des émissions de TRWP (actuellement fixes) sont montrées en bas à droite de la figure.

2. la conception puis la réalisation d'un dispositif qui permet une mesure multidirectionnelle et isocinétique des émissions de TRWP. Ce dispositif sera disposé à l'arrière de l'une des roues du VE et portera les sondes destinées à la mesure des émissions (*Fig. 2*). Son rôle sera de suivre automatiquement l'orientation de la roue lorsque le véhicule tourne et/ou d'adapter l'ouverture de la prise d'air/d'échantillon à la vitesse. La phase de conception et de prototypage se fera en distanciel. Elle permettra d'établir le cahier de charge du dispositif ainsi que de développer l'intelligence artificielle qui le pilotera. Le laboratoire fournira le petit matériel nécessaire (capteurs, moteurs, cartes électronique...) pour que l'étudiant puisse développer et tester un prototype sur un véhicule de son choix (vélo, trottinette...). La réalisation du dispositif final aura lieu sur le site de l'UGE de Nantes. L'étudiant y bénéficiera de l'expertise et des outils de l'équipe technique du laboratoire EASE (Mme Lumière L., MM Es-Sabar A. et Louis S.). Ce travail nécessite un savoir-faire de qualité en mécatronique.

Chacun de ces sujets permettront à l'étudiant acquérir des savoir-faire techniques et scientifiques uniques sur l'instrumentation des véhicules et les émissions hors-échappement (principale source de pollution aux particules fines des VE à l'usage). L'étudiant pourra également participer à la collecte et à la caractérisation des TRWP au moyen d'un microscope électronique et ainsi se familiariser avec l'utilisation de cet instrument.

Bibliographie

- [1] Wagner et al., 2018. https://doi.org/10.1016/j.watres.2018.03.051
- [2] Baensch-Baltruschat et al., 2020. https://doi.org/10.1016/j.scitotenv.2020.137823
- [3] OEDC, 2020. https://www.oecd-ilibrary.org/environment/non-exhaust-particulate-emissions-from-road-transport_4a4dc6ca-en
- [4] Continental, 2025. https://www.continental-tires.com/products/b2c/tire-knowledge/electric-vehicle-tires/